Abstract

Proton irradiation induced Nb redistribution in Zr-xNb alloys (x = 0.4, 0.5, 1.0 wt%) has been investigated using scanning transmission electron microscopy/energy dispersive X-ray spectroscopy (STEM/EDS). Zr-xNb alloys are mainly composed of Zr matrix, native Zr–Nb–Fe phases, and β-Nb precipitates. After 2 MeV proton irradiation at 350 °C, a decrease of Nb content in native precipitates, as well as irradiation-induced precipitation of Nb-rich platelets (135 ± 69 nm long and 27 ± 12 nm wide) were found. Nb-rich platelets and Zr matrix form the Burgers orientation relationship, [11¯1]//[21¯1¯0] and (011)//(0002). The platelets were found to be mostly coherent with the matrix with a few dislocations near the ends of the precipitate. The coherent strain field has been measured in the matrix and platelets by the 4D-STEM technique. The growth of Nb-rich platelets is mainly driven by coherency and dislocation-induced strain fields. Irradiation may both enhance the diffusion and induce segregation of interstitial Nb to the ends of the irradiation induced platelets, further facilitating their growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.