Abstract
For the purpose of elevated temperature service and weight reduction in aerospace vehicle applications, a novel Ti–Zr–Fe–Cu–Ni–Co–Mo filler metal was employed to join TiAl to Ni-based superalloy (GH536). The effects of brazing temperature on interfacial microstructure and chemical composition of the joints were analyzed. The representative joint microstructure from TiAl substrate to GH536 substrate was primarily composed of four characteristic layers in order: B2; Al3NiTi2; AlNi2Ti containing Cr-rich (Cr, Ni, Fe)ss (subscript ss represents solid solution), Ni-rich (Ni, Cr, Fe)ss and TiNi3; Cr-rich (Cr, Ni, Fe)ss containing AlNi2Ti, Ni-rich (Ni, Cr, Fe)ss and TiNi3. Layer IV has the majority of the brazing seam, while Layer II was the thinnest. And the thickness of Layer II was not affected by brazing temperature. With the increase in brazing temperature in the range of 1110–1170 °C, both the shear strength and the thickness of brazing seam firstly increased and then decreased. The joint performance was jointly controlled by the thickness of brazing seam, the amounts of microcracks and intermetallic compounds formed in brazing seam. The maximum shear strength of 183 MPa at room temperature was obtained together with a peak thickness when the joint was brazed at 1150 °C for 10 min and the shear fracture mainly occurred in the thinnest Layer II Al3NiTi2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.