Abstract

Oxide/oxide composites reinforced by two-dimensional fiber fabrics are important structural materials at high temperatures but exhibit low delamination resistance. This study developed a simple slurry infiltration and sintering (SIS) process to fabricate three-dimensional oxide/oxide composites. The results showed that a homogeneous microstructure in three directions was obtained. This composite possessed a weak matrix, which had a porous structure and low elastic modulus. Typical mechanical properties of the composite were not lower than those of two-dimensional oxide/oxide composites since the flexural strength and fracture toughness were 332.4 MPa and 11.6 MPa·m1/2, respectively. Particularly, the composite had a good interlaminar shear strength of 25.4 MPa and a superior transthickness tensile strength of 5.6 MPa. X-ray computed tomography showed that fiber yarns in the through-thickness direction effectively impeded crack propagation and enhanced delamination resistance. Therefore, the reported SIS process is a very promising method for manufacturing three-dimensional oxide/oxide composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.