Abstract
There is growing interest in developing more advanced materials, as conventional materials are unable to meet the demands of the automotive, aerospace, and military industries. To meet the needs of these sectors, the use of advanced materials with superior properties, such as metal matrix composites, is essential. This paper discusses the evaluation of microstructural and mechanical properties of conventional eutectic EN AC-AlSi12CuNiMg aluminum alloy (AlSi12) and advanced composite based on EN AC-AlSi12CuNiMg alloy matrix with 10 wt% SiC particle reinforcement (AlSi12/10SiCp). The microstructure of these materials was investigated with the help of metallographic techniques, specifically using a light microscope (LM) and a scanning electron microscope (SEM). The results of the microstructural analysis show that the SiC particles are uniformly distributed in the matrix. The results of the mechanical tests indicate that the tensile properties and hardness of the AlSi12/10SiCp composite are significantly higher than those of the unreinforced eutectic alloy. For AlSi12/10SiCp composite, the tensile strength is 21% higher, the yield strength is 16% higher, the modulus of elasticity is 20% higher, and the hardness is 11% higher than unreinforced matrix alloy. However, the unreinforced AlSi12 alloy has a percentage elongation that is 16% higher than the composite material. This shows that the AlSi12/10SiCp composite has a lower ductility than the unreinforced AlSi12 alloy. The tensile specimens of the tested composite broke apart in a brittle manner with no discernible neck development, in contrast to the matrix specimens, which broke apart in a ductile manner with very little discernible neck formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.