Abstract

The mechanical properties of Al2O3‐based porous ceramics fabricated from pure Al2O3 powder and the mixtures with Al(OH)3 were investigated. The fracture strength of the porous Al2O3 specimens sintered from the mixture was substantially higher than that of the pure Al2O3 sintered specimens because of strong grain bonding that resulted from the fine Al2O3 grains produced by the decomposition of Al(OH)3. However, the elastic modulus of the porous Al2O3 specimens did not increase with the incorporation of Al(OH)3, so that the strain to failure of the porous Al2O3 ceramics increased considerably, especially in the specimens with high porosity, because of the unique pore structures related to the large original Al(OH)3 particles. Fracture toughness also increased with the addition of Al(OH)3 in the specimens with higher porosity. However, fracture toughness did not improve in the specimens with lower porosity because of the fracture‐mode transition from intergranular, at higher porosity, to transgranular, at lower porosity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.