Abstract

To obtain a compatible material of high hardness and high toughness, Hadfield steel matrix was reinforced by oriented high-chromium cast iron bars. The mechanical behaviors of the as-cast and water-quenched composites were comparatively studied with a Hadfield steel substrate. The experimental results showed that the alloy powders inside the flux-cored welding wires could be melted by the heat capacity of Hadfield steel melt and became high-chromium cast iron bars. The impact toughness of the water-quenched composite was higher than that of the as-cast composite and lower than that of the Hadfield steel. The wear rate of the water-quenched composite was 1.23 mg/h m2 at 0.3 kg and 2.93 mg/h m2 at 1.2 kg, which was lower compared with those of the as-cast composite and Hadfield steel. The impact toughness and wear resistance of the water-quenched composite were related not only to the combining actions of the Hadfield steel matrix and high-chromium cast iron bars but also to the effect of heat treatment. The wear behavior of the water-quenched composite was industrially tested as pulverizer plate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.