Abstract

Ultrafine-grained (UFG) Cu and Cu–Zn alloy were prepared using equal-channel angular pressing (ECAP) to investigate the effects of stacking fault energy (SFE) on microstructure evolution and mechanical properties. Combining with the previous researches, the grain refinement process of ECAP is divided into three stages based on the variation of tensile strength and plasticity. According to the influences of defects on strength and ductility during plastic deformation, the three stages are discussed in detail by considering the dislocation density, grain and twin boundaries. Besides, the impact of SFE on the strength and ductility of the UFG Cu–Zn alloys are evaluated, indicating that these two mechanical properties can be improved simultaneously in the whole ECAP process either through slightly or widely adjusting the SFE. This significant effect of SFE reflects in two aspects, one is in the microstructure evolution during ECAP processing and the other is in the subsequent tensile plastic deformation, both of which can be achieved through regulating the dislocation motion via changing the SFE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.