Abstract

An optimized continuous ceramic SiC and shape memory alloy NiTi hybrid fibers reinforced Ti-Al metal-intermetallic laminated composite (as-optimized CSMAFR-MIL) was designed and fabricated using vacuum hot pressing sintering technique. The microstructure characterization of the composite was performed by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) and X-ray diffractometer (XRD). The formation mechanisms of the intermetallic layer were discussed. Furthermore, the mechanical properties of the as-optimized CSMAFR-MIL composite were measured via tensile tests. The experimental results indicated that the NiTi fibers were exhausted, and the inhomogeneous intermetallic layer was formed containing Al3Ni, Al3Ti, Al3Ti0.8V0.2 intermetallics due to the reactions of Al with NiTi and Ti-6Al-4V alloy. Meanwhile, the intermetallic centerline, which usually appeared in Ti-Al laminated composite, was significantly eliminated in the as-optimized CSMAFR-MIL composite due to the diffusion reaction between NiTi fiber and Al. In addition, the SiC fibers combined well with the intermetallics, and the interfacial phases TiC and Al4C3 were formed around the SiC fiber. Moreover, compared to continuous SiC fiber reinforced Ti-Al metal-intermetallic laminated (CFR-MIL) composite, the as-optimized CSMAFR-MIL composite possessed a good combination of high strength and superior ductility owing to the optimized microstructure of the composite and the mixed fracture mode of intermetallics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.