Abstract

In this work, we prepared Al-7075/B4C composites by milling powder mixtures using a shaker–mixer mill, sintering the milled mixtures using plasma activated sintering (PAS), and heat treating the sintered product. To characterize the microstructure of the composites, we used field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Al-7075/B4C composites can be prepared by PAS with high relative densities at low temperature. Increasing the B4C content increased the hardness, bending strength, and compressive yield strength of the composite. However, adding too much B4C caused B4C agglomerates to form, decreasing the hardness and bending strength of the composite. At 7.5 wt.% B4C, the Vickers hardness, bending strength, and compressive strength of the consolidated samples were 184.3HV, 813MPa, and 895MPa, respectively. We attributed these superior mechanical properties to good interfacial bonding between the matrix alloy and the reinforcement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.