Abstract
The effects of 1.5, 2.5 and 3.5 wt.% Cu additions on the microstructure and creep behavior of the as-cast Al-9Si alloy were investigated by impression tests. The tests were performed at temperature ranging from 493 to 553 K and under punching stresses in the range 300 to 414 MPa for dwell times up to 3000 seconds. The results showed that, for all loads and temperatures, the Al–9Si–3.5Cu alloy had the lowest creep rates and thus, the highest creep resistance among all materials tested. This is attributed to the formation of hard intermetallic compound of Al2Cu, and higher amount of α-Al2Cu eutectic phase. The stress exponent and activation energy are in the ranges of 5.2- 7.2 and 115 -150 kJ/ mol, respectively for all alloys. According to the stress exponent and creep activation energies, the lattice and pipe diffusion- climb controlled dislocation creep were the dominant creep mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.