Abstract

High entropy alloys (HEAs) are a newly developed family of multi-component glassy alloys composed of several major alloying elements, such as copper, nickel, aluminum, cobalt, chromium, iron, silicon, titanium, etc. The HEA studied had a nearly amorphous structure as proven by X-ray diffraction (XRD), selected area diffraction (SAD), and differential scanning calorimetry (DSC) analysis. The dendritic phase was composed mainly of a non-crystalline phase with a little body centered cubic (BCC) structure whereas the interdendritic phase had an amorphous structure containing small amounts of nano-scale precipitates. The HEA had a high degree of atomic disorder with mechanical properties comparable to that of glass and it was therefore hard but brittle. Its hardness (Hv860) was much higher than that of type-304 stainless steel (Hv265). The anodic polarization curves of the HEA, obtained in aqueous solutions of NaCl and H 2SO 4, clearly indicated that the general corrosion resistance of the HEA at ambient temperature (∼25 °C) is superior to that of 304S, irrespective of the concentration of electrolyte in the range 0.1–1 M. On the other hand, the HEA’s resistance to pitting corrosion in a Cl − environment is inferior to that of 304S, as indicated by a lower pitting potential and a narrower passive region for the HEA. Tests in 1 N sulfuric acid containing different concentrations of chloride ions showed that the HEA has least resistance to general corrosion at a chloride ion concentration of 0.5 M (close to the concentration in seawater). The lack of hysteresis in cyclic polarization tests confirmed that the HEA—like 304S—is not susceptible to pitting corrosion in chloride-free 1 N H 2SO 4.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.