Abstract

Significant grain refinement was achieved in a new Mg–2Gd–1Y–1Zn–0·2Zr (at-%) alloy through multipass equal channel angular pressing (ECAP) at 623 K. Corrosion behaviours of the ECAPed alloy were investigated by hydrogen evolution and electrochemical measurement in NaCl solution at room temperature. The results showed that a large number of intergranular phases were stretched and gradually broken above four ECAP passes, but the fine grained α-Mg phase was much easier to grow after 12 ECAP passes for dynamic recrystallisation. The corrosion resistance of the ECAPed Mg alloy in a fine grained state considerably increases, compared with that in the as cast state. After four ECAP passes, the corrosion potential, the pitting potential and the resistance value achieved −1·55 V, −1·39 V and 2·08 KΩ respectively. However, excessive ECAP passes reduced the corrosion resistance of the fine grained Mg alloy, due to grain coarsening and the gradual loss of barrier effect of intergranular phases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.