Abstract

Alloys with the composition of Sn (46.5 at.%)–In (50.7 at.%)–Zn (2.8 at.%) were fabricated by using the ultrarapid quenching process, with quenching rate up to 105 K/s. These materials were obtained in the shape of foils with a thickness varying from 30 to 70 µm. Their phase composition, microstructure, grain structure, and texture have been analyzed and revealed that these alloys consist of solid solutions based on the β phase (In3Sn) and γ phase (InSn4) with inclusions of zinc. Aging processes in the foils revealed that the volume fraction of zinc (VZn) increases with the increase in the samples exposure time to the air at room temperature. The electron backscatter diffraction analysis has shown that these foils have a microcrystalline structure. The mechanism of the texture formation in these materials has been explained.

Highlights

  • The most popular soldering materials used in electronic packaging are the eutectic Sn–37Pb and near eutectic Sn–Pb

  • In Europe, the waste electrical and electronic equipment (WEEE) directive by EU has banned the use of Pb in consumer goods, while the restriction of hazardous substances (ROHS) compliance has claimed that Pb is the most common material that must be eliminated [3]

  • The areas with the maximum indium concentrations belong to the b phase, while those with the maximum tin concentrations correspond to the c-phase

Read more

Summary

Introduction

The most popular soldering materials used in electronic packaging are the eutectic Sn–37Pb and near eutectic Sn–Pb. In recent years, there has been a significant amount of efforts dedicated by the research community and its related industrial users to investigate Pb-free eco-friendly solders alternatives suitable for a wide range of applications [4, 5]. To this end, new types of solders are being currently developed by using complex multicomponent alloys, time-consuming, costly or sophisticated fabrication techniques requiring a careful approach to melting, using noble metals or rare earths (Au, Ag, RE). Hindler et al [8] investigated the thermodynamics of Au-based alloys, including Au–Sb–Sn and Au–Sb, by using conventional quenching in iced water, a time-consuming process

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.