Abstract

Solid state dewetting can be used for targeted patterning, but also causes degradation or failure of thin film devices. In this work the temperature-induced changes of a tetracrystalline model system with inhibited surface diffusion are studied. This is accomplished by growing Al thin films by molecular beam epitaxy on single crystalline (0001) oriented sapphire substrates. The as-deposited Al films form two orientation relationships (OR I and OR II) both subdivided in two twin-related growth variants leading to a tetracrystalline microstructure. Two processes evolve during annealing at 600 °C. Grain growth and texture evolution towards OR II occur in addition to the formation of drum-like voids in the Al film covered by a thin membrane. The surface oxide suppresses Al surface diffusion and in contrast to classical solid state dewetting interface and grain boundary diffusion dominate. High energy grain boundaries were identified as initial points of the void formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.