Abstract

Zr-1Nb-1Sn-0.1Fe nuclear fuel cladding tube was pre-oxidised at five different temperatures (803, 908, 1012, 1112, and 1200 °C), and subsequent oxidation tests were performed at 1012 °C. All the pre-oxidised specimens showed a little or no breakaway oxidation after the subsequent oxidation at 1012 °C for 5130 s, but the non-pre-oxidised specimen showed a severe breakaway oxidation after the subsequent oxidation at 1012 °C for 5130 s. In addition, comparing the weight gains and oxide thicknesses of the pre-oxidised specimens with those of the non-pre-oxidised specimens, all the preformed oxides were effective in enhancing the oxidation resistance, and the preformed oxide formed at higher temperature was more effective. The preformed oxides were examined using electron probe microanalyser and transmission electron microscopy, which showed that the fraction of Zr-Sn type precipitates increased with increasing the pre-oxidation temperature. This phase change of the precipitates may cause the preformed oxide formed at higher temperature to exhibit better oxidation resistance enhancement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.