Abstract

This article presents the structural and transport characteristics of hydrothermally synthesized LaF3 nanoparticles with an average crystallite size of 35nm. The phase formation of the material is confirmed by both X-ray diffraction and transmission electron microscopy techniques. In addition, phase purity of the LaF3 nanoparticles is corroborated by micro-Raman spectroscopy studies. The complex impedance plots at different temperatures reveal that the conductivity is predominantly due to the intrinsic bulk grains and the conductivity relaxation is non-Debye in nature. The frequency variation of conductivity exhibits dispersion at higher frequencies that can be explained with the frame work of Almond-West formalism. The conduction process is controlled by the mobility of the charge carriers and the charge of transport of mobile fluoride ions occur through hopping mechanism. The scaling behavior of both frequency dependence of conductivity and complex impedance plots at different temperatures confirm that the relaxation mechanism of the mobile fluoride ions is independent of temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.