Abstract

Neurosurgical treatment of Parkinson's disease (PD) frequently employs chronic high-frequency deep brain stimulation (DBS) within the internal segment of globus pallidus (GPi) and can very effectively reduce L-dopa-induced dyskinesias and bradykinesia, but the mechanisms are unknown. The present study examined the effects of microstimulation in GPi on the activity of neurons close to the stimulation site. Recordings were made from GPi using two fixed or independently controlled microelectrodes, with the electrode tips usually approximately 250 or >600 micrometer apart in PD patients undergoing stereotactic exploration to localize the optimal site for placement of a lesion or DBS electrode. The spontaneous activity of nearly all of the cells (22/23) recorded in GPi in three patients was inhibited by microstimulation at currents typically <10 microA (0.15-ms pulses at 5 Hz). The inhibition had a duration of 10-25 ms at threshold. These findings suggest that microstimulation within GPi preferentially excites the axon terminals of striatal and/or external pallidal neurons causing release of GABA and inhibition of GPi neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.