Abstract

Fresh, frozen sections of the photoreceptor layer of the compound eye of the moth Galleria have been examined by microspectrophotometry, using 4 times 8 mum measuring beams that sampled from approximately two to four rhabdoms. The principal visual pigment absorbs maximally at 510 nm (P510), and on irradiation is converted to a thermally stable, pH-insensitive metarhodopsin with lambda max at 484 nm (M484) and a 43% increase in molar extinction coefficient. Subsequently, short wavelength irradiation of the metarhodopsin photoregenerates some P510, but the absence of an isosbestic point the cycle of spectral changes is consistent with the presence of smaller amounts of violet-or ultraviolet-sensitive visual pigment(s) that also are converted to a blue-absorbing metarhodopsin. Difference spectra for both P510 and M484 were measured, using hydroxylamine. The 484-nm metarhodopsin is reversibly converted to a form with lambda max at 363 nm by high concentrations of glycerol. Dark regeneration of rhodopsin in vivo after several minutes exposure of thoroughly dark-adapted animals to full sunlight requires several days.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.