Abstract

Risks associated with unstable rocky slopes are growing as a result of climate change and rapid expansions of human habitats and critical infrastructure in mountainous regions. To improve our understanding of mountain slope instability, we developed a microseismic monitoring system that operates autonomously in remote areas afflicted by harsh weather. Our microseismic system comprising 12 three‐component geophones was deployed across ∼60,000 m2 of rugged crystalline terrain above a huge (30 million m3) recent rockfall in the Swiss Alps. During its 31‐month lifetime, signals from 223 microearthquakes with approximate moment magnitudes ranging from −2 to 0 were recorded. Determining the hypocenters was challenging for several reasons: (1) P wave velocities were highly heterogeneous, varying abruptly from <1.5 km/s to >3.8 km/s. (2) First‐break picks were either inaccurate or lacking for some microearthquakes. (3) There were no reliable S wave picks. (4) Numerous microearthquakes occurred just outside the network boundaries. These issues were addressed by using a three‐dimensional (3‐D) P wave velocity model of the mountain slope determined from refraction tomography in a nonlinear inversion for hypocenter parameters and their probability density functions. Recordings from geophones at different altitudes and in boreholes constrained microearthquake depth estimates. Most microearthquakes were concentrated within 50–100 m of the surface in two zones, one that followed the recent rockslide scarp and one that spanned the volume of highest fracture zone/fault density. These two active zones delineated a mass of rock that according to geodetic measurements has moved toward the scarp at 1–2 cm/yr.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.