Abstract

Random and coherent noise exists in microseismic and seismic data, and suppressing noise is a crucial step in seismic processing. We have developed a novel seismic denoising method, based on ensemble empirical mode decomposition (EEMD) combined with adaptive thresholding. A signal was decomposed into individual components called intrinsic mode functions (IMFs). Each decomposed signal was then compared with those IMFs resulting from a white-noise realization to determine if the original signal contained structural features or white noise only. A thresholding scheme then removed all nonstructured portions. Our scheme is very flexible, and it is applicable in a variety of domains or in a diverse set of data. For instance, it can serve as an alternative for random noise removal by band-pass filtering in the time domain or spatial prediction filtering in the frequency-offset domain to enhance the lateral coherence of seismic sections. We have determined its potential for microseismic and reflection seismic denoising by comparing its performance on synthetic and field data using a variety of methods including band-pass filtering, basis pursuit denoising, frequency-offset deconvolution, and frequency-offset empirical mode decomposition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.