Abstract

Studying protein dynamics on microsecond-to-millisecond (μs-ms) time scales can provide important insight into protein function. In magic-angle-spinning (MAS) NMR, μs dynamics can be visualized by rotating-frame relaxation dispersion experiments in different regimes of radio-frequency field strengths: at low RF field strength, isotropic-chemical-shift fluctuation leads to "Bloch-McConnell-type" relaxation dispersion, while when the RF field approaches rotary resonance conditions bond angle fluctuations manifest as increased rate constants ("Near-Rotary-Resonance Relaxation Dispersion", NERRD). Here we explore the joint analysis of both regimes to gain comprehensive insight into motion in terms of geometric amplitudes, chemical-shift changes, populations and exchange kinetics. We use a numerical simulation procedure to illustrate these effects and the potential of extracting exchange parameters, and apply the methodology to the study of a previously described conformational exchange process in microcrystalline ubiquitin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.