Abstract
Thermodiffusion in associating mixtures is a complex phenomenon, owing to the strong dependence of the molecular structure of such mixtures on concentration. In this paper, we attempt to elucidate this phenomenon and propose a qualitative mechanism for the separation of species in binary associating mixtures. A correlation between the sign change in the thermal diffusion factor and a change in the molecular structure, mixture viscosity, and the excess entropy of mixing in such mixtures is established. To quantify this correlation, we modify our recently developed dynamic model based on the Drickamer nonequilibrium thermodynamic approach [M. Eslamian and M. Z. Saghir, Phys. Rev. E 80, 011201 (2009)] and propose expressions for the estimation of thermal diffusion factor in binary associating mixtures. The prediction power of the proposed expressions, as well as other widely used models, are examined against the experimental data. The proposed theoretical expressions are self-contained and only rely on the viscosity data as input and predict a sign change in the thermal diffusion factor in associating mixtures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.