Abstract

We study the conversion of bulk Se and Te, consisting of intertwined a helices, to structurally very dissimilar, atomically thin two-dimensional (2D) layers of these elements. Our ab initio calculations reveal that previously unknown and unusually stable δ and η 2D allotropes may form in an intriguing multistep process that involves a concerted motion of many atoms at dislocation defects. We identify such a complex reaction path involving zipper-like motion of such dislocations that initiate structural changes. With low activation barriers ≲0.3 eV along the optimum path, the conversion process may occur at moderate temperatures. We find all one-dimensional (1D) and 2D chalcogen structures to be semiconducting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.