Abstract
We obtain macroscopic isothermal thermodynamic transformations by space-time scalings of a microscopic Hamiltonian dynamics in contact with a heat bath. The microscopic dynamics is given by a chain of anharmonic oscillators subject to a varying tension (external force) and the contact with the heat bath is modeled by independent Langevin dynamics acting on each particle. After a diffusive space-time scaling and cross-graining, the profile of volume converges to the solution of a deterministic diffusive equation with boundary conditions given by the applied tension. This defines an irreversible thermodynamic transformation from an initial equilibrium to a new equilibrium given by the final tension applied. Quasi static reversible isothermal transformations are then obtained by a further time scaling. Heat is defined as the total flux of energy exchanged between the system and the heat bath. Then we prove that the relation between the limit heat, work, free energy and thermodynamic entropy agree with the first and second principle of thermodynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: HAL (Le Centre pour la Communication Scientifique Directe)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.