Abstract

The structural characterization of epoxy resins is essential to improve the understanding on their structure–property relationship for promising high-performance applications. Among all analytical techniques, scanning transmission electron microscopy–electron energy-loss spectroscopy (STEM–EELS) is a powerful tool for probing the chemical and structural information of various materials at a high spatial resolution. However, for sensitive materials, such as epoxy resins, the structural damage induced by electron-beam irradiation limits the spatial resolution in the STEM–EELS analysis. In this study, we demonstrated the extraction of the intrinsic features and structural characteristics of epoxy resins by STEM–EELS under electron doses below 1 e–/Å2 at room temperature. The reliability of the STEM–EELS analysis was confirmed by X-ray absorption spectroscopy and spectrum simulation as low- or non-damaged reference data. The investigation of the dependence of the epoxy resin on the electron dose and exposure time revealed the structural degradation associated with electron-beam irradiation, exploring the prospect of EELS for examining epoxy resin at low doses. Furthermore, the degradation mechanisms in the epoxy resin owing to electron-beam irradiation were revealed. These findings can promote the structural characterization of epoxy-resin-based composites and other soft materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.