Abstract

Compared with short-lived emission probes featuring fluorescence imaging , the use of phosphorescent probes imparts the advantage of long-lived signal persistence that distinguishes against background fluorescence interference. However, the realization of ultralong organic phosphorescent (UOP) probes with an ultralong emission lifetime in an aqueous medium is still a challenge. Here, we present a rational strategy for obtaining UOP nanoparticles (NPs) in an air-saturated aqueous medium prepared using an organic phosphor (PDBCz) and a surfactant polymer (PVP), named PDBCz@PVP, showing an ultralong emission lifetime of 284.59 ms and a phosphorescence quantum efficiency of 7.6%. The excellent phosphorescence properties and water solubility of PDBCz@PVP make it a promising candidate for biological imaging. The as-prepared PDBCz@PVP NPs possess excellent luminescence intensity as well as illustrious biocompatibility both in vitro and in vivo. We demonstrate their use as an efficient phosphorescent nanoprobe both in living cells and zebrafish by capturing their afterglow emission signals under microscopy observation for the first time, realizing convenient and fast bioimaging with low cost, which allows for anti-fluorescence interference and shows promise for the future theragnostic applications in nanomedicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.