Abstract

Diabetic wounds are recalcitrant to healing. However, the mechanism causing this dysfunction is not fully understood. High expression of matrix metalloproteinase-9 (MMP-9) is indicative of poor wound healing. In this study, we show that specificity protein-1 (Sp1), a regulator of MMP-9, binds directly to its promoter and enhances its expression. Additionally, we demonstrated that Sp1 is the direct target of two microRNAs (miRNAs), miR-129 and -335, which are significantly downregulated in diabetic skin tissues. In vitro experiments confirmed that miR-129 or -335 overexpression inhibits MMP-9 promoter activity and protein expression by targeting Sp1, whereas the inhibition of these miRNAs has the opposite effect. The beneficial role of miR-129 or miR-335 in diabetic wound healing was confirmed by the topical administration of miRNA agomirs in diabetic animals. This treatment downregulated Sp1-mediated MMP-9 expression, increased keratinocyte migration, and recovered skin thickness and collagen content. The combined treatment with miR-129 and miR-335 induced a synergistic effect on Sp1 repression and MMP-9 downregulation both in vitro and in vivo. This study demonstrates the regulatory mechanism of Sp1-mediated MMP-9 expression in diabetic wound healing and highlights the potential therapeutic benefits of miR-129 and -335 in delayed wound healing in diabetes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.