Abstract

microRNAs are small noncoding genes that regulate the protein production of genes by binding to partially complementary sites in the mRNAs of targeted genes. Here, using our algorithm PicTar, we exploit cross-species comparisons to predict, on average, 54 targeted genes per microRNA above noise in Drosophila melanogaster. Analysis of the functional annotation of target genes furthermore suggests specific biological functions for many microRNAs. We also predict combinatorial targets for clustered microRNAs and find that some clustered microRNAs are likely to coordinately regulate target genes. Furthermore, we compare microRNA regulation between insects and vertebrates. We find that the widespread extent of gene regulation by microRNAs is comparable between flies and mammals but that certain microRNAs may function in clade-specific modes of gene regulation. One of these microRNAs (miR-210) is predicted to contribute to the regulation of fly oogenesis. We also list specific regulatory relationships that appear to be conserved between flies and mammals. Our findings provide the most extensive microRNA target predictions in Drosophila to date, suggest specific functional roles for most microRNAs, indicate the existence of coordinate gene regulation executed by clustered microRNAs, and shed light on the evolution of microRNA function across large evolutionary distances. All predictions are freely accessible at our searchable Web site http://pictar.bio.nyu.edu.

Highlights

  • It has been discovered that the genomes of animals contain hundreds of microRNA genes

  • These small noncoding genes are typically transcribed by RNA polymerase II, processed into hairpins, and exported into the cytoplasm, where they are cleaved by the central enzyme of the RNAi pathway, Dicer, to form single-stranded mature microRNAs [1,2]

  • It has been widely demonstrated that the success of the computational identification of microRNA target sites can be significantly boosted by searching for target sites that are evolutionarily conserved, and likely to be functional

Read more

Summary

Introduction

It has been discovered that the genomes of animals contain hundreds of microRNA genes. Cross-species comparisons, which allow for the identification of evolutionarily conserved and likely functional target sites, have proven very helpful to boost the sensitivity of microRNA target detection. Three independent studies based on cross-species comparisons of eight vertebrates concluded that in vertebrates, microRNAs are predicted to regulate at least 20%–30% of all genes [8,13,15]. These findings are consistent with experimental results [3]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.