Abstract

Matrix metalloproteinase-1 (MMP1) participates in the metastasis of pancreatic cancer, and its expression can be regulated by endogenous microRNAs (miRs/miRNAs) and exogenous inflammatory factors. Whether miRNAs that potentially modulate MMP1 expression can also attenuate the pro-metastatic effects of its inducer on pancreatic cancer is yet to be completely elucidated. In the present study, a systematic analysis including in silico and bioinformatics analyses, a luciferase reporter assay and an RNA electrophoretic mobility shift assay (EMSA), were used to investigate the interaction between miRNAs and MMP1 mRNA. In addition, wound-healing assays, Transwell assays and xenograft nude mouse models were implemented to investigate the antitumor activities exerted by candidate miRNAs. As a result, hsa-miR-623 was screened as a candidate miRNA that interacts with the MMP1 transcript, and an inverse correlation between the expression of hsa-miR-623 and MMP1 was observed in human pancreatic cancer tissue samples. The EMSA confirmed that hsa-miR-623 was able to directly bind to its cognate target within the 3′-untranslated region of the MMP1 transcript. In addition, transfection of hsa-miR-623 mimics into PANC-1 and BXPC-3 cell lines markedly inhibited the expression of MMP1 at the mRNA and protein levels, and attenuated IL-8-induced MMP1 expression. hsa-miR-623 also decreased IL-8-induced epithelial-mesenchymal transition in PANC-1 and BXPC-3 cells via the underlying mechanism of inhibition of ERK phosphorylation. Consequently, hsa-miR-623 inhibited pancreatic cancer cell migration and invasion in vitro and metastasis in vivo. The results of the present study suggest that hsa-miR-623 represents a novel adjuvant therapeutic target to prevent metastasis in pancreatic cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.