Abstract

The medial prefrontal cortex (mPFC), master regulator of higher-order cognitive functions, is the only brain region that matures until late adolescence. During this period, the mPFC is sensitive to stressful events or suboptimal nutrition. For instance, high-fat diet (HFD) feeding during adolescence markedly impairs prefrontal-dependent cognition. It also provokes multiple changes at the cellular and synaptic scales within the mPFC, suggesting that major transcriptional events are elicited by HFD during this maturational period. The nature of this transcriptional reprogramming remains unknown, but may include epigenetic processes, in particular microRNAs, known to directly regulate synaptic functions. We used high–throughput screening in the adolescent mouse mPFC and identified 38 microRNAs differentially regulated by HFD, in particular mir-30e-5p. We used a luciferase assay to confirm the functional effect of mir-30e-5p on a chosen target: Ephrin-A3. Using global pathway analyses of predicted microRNA targets, we identified biological pathways putatively affected by HFD. Axon guidance was the top-1 pathway, validated by identifying gene expression changes of axon guidance molecules following HFD. Our findings delineate major microRNA transcriptional reprogramming within the mPFC induced by adolescent HFD. These results will help understanding the contribution of microRNAs in the emergence of cognitive deficits following early-life environmental events.

Highlights

  • Deteriorated in the past few decades, incorporating increasing levels of processed foods, artificial additives, refined sugars, and unhealthy dietary fats[19,20], which may in turn negatively affect the medial prefrontal cortex (mPFC)

  • We showed that adolescent high-fat diets (HFD) is associated with multiple and various changes at the cellular and synaptic scales within the mPFC, including modulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-Methyl-D-aspartate (NMDA) neurotransmission, impairments in synaptic plasticity, or reductions in interneuron-specific protein levels

  • We investigated the effects of HFD on different cognitive paradigms that depend on the integrity of the mPFC

Read more

Summary

Introduction

Deteriorated in the past few decades, incorporating increasing levels of processed foods, artificial additives, refined sugars, and unhealthy dietary fats[19,20], which may in turn negatively affect the mPFC. We showed that adolescent HFD is associated with multiple and various changes at the cellular and synaptic scales within the mPFC, including modulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-Methyl-D-aspartate (NMDA) neurotransmission, impairments in synaptic plasticity, or reductions in interneuron-specific protein levels Some of these neuronal alterations are not observed with a similar dietary exposure during adulthood. At the molecular scale, there may be a number of transcriptional reprogramming events that occur in response to HFD in the mPFC during adolescence, which in turn would modulate expression levels of multiple neuronal proteins and affect mPFC function The nature of these transcriptional reprogramming events remains unknown, but could include epigenetic mechanisms that allow modifying gene activity without altering the DNA code. We validated these analyses using qPCR to confirm the emergence of miRNA-relevant gene expression changes within a top predicted biological pathway, namely Axon Guidance

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.