Abstract

Dominant mutations in the Arabidopsis PHABULOSA (PHB) and PHAVOLUTA (PHV) transcription factor genes cause transformation of abaxial to adaxial leaf fates by altering a microRNA complementary site present in processed PHB and PHV mRNAs but not in the corresponding genomic DNA. phb-1d mutants accumulate excess PHB transcript throughout the leaf primordium, indicating defective regulation of PHB transcript synthesis and/or stability. We show that PHB and PHV coding sequences are heavily methylated downstream of the microRNA complementary site in most wild-type plant cells and that methylation is reduced in phb-1d and phv-1d mutants. Decreased methylation is limited to the chromosome bearing the dominant mutant allele in phb-1d heterozygotes. Low levels of methylation are detected in wt PHB DNA isolated from undifferentiated tissues. These results suggest a model in which the microRNA interacts with nascent, newly processed PHB mRNA to alter chromatin of the corresponding PHB template DNA predominantly in differentiated cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.