Abstract

BackgroundDysregulated miR-7 and aberrant NF-κB activation were reported in various human cancers. However, the expression profile, clinical relevance and dysregulated mechanism of miR-7 and NF-κB RelA/p65 in human gastric cancers (GC) metastasis remain largely unknown. This study is to investigate the expression profile, clinical relevance and dysregulated mechanism of miR-7 and NF-κB RelA/p65 in GC and to explore the potential therapeutic effect of miR-7 to GC distant metastasis.MethodsTCGA STAD and NCBI GEO database were used to investigate the expression profile of miR-7 and NF-κB RelA/p65 and clinical relevance. Lentivirus-mediated gene delivery was applied to explore the therapeutic effect of miR-7 in GC. Real-time PCR, FACS, IHC, IF, reporter gene assay, IP, pre-miRNA-7 processing and binding assays were performed.ResultsLow miR-7 correlated with high RelA/p65 in GC with a clinical relevance that low miR-7 and high RelA/p65 as prognostic indicators of poor survival outcome of GC patients. Moreover, an impaired pre-miR-7 processing caused by dysregulated Dicer1 expression is associated with downregulated miR-7 in GC cells. Functionally, delivery of miR-7 displays therapeutic effects to GC lung and liver metastasis by alleviating hemangiogenesis, lymphangiogenesis as well as inflammation cells infiltration. Mechanistically, miR-7 suppresses NF-κB transcriptional activity and its downstream metastasis-related molecules Vimentin, ICAM-1, VCAM-1, MMP-2, MMP-9 and VEGF by reducing p65 and p-p65-ser536 expression. Pharmacologic prevention of NF-κB activator LPS obviously restored miR-7-suppressed NF-κB transcriptional activation and significantly reverted miR-7-inhibited cell migration and invasion.ConclusionsOur data suggest loss of miR-7 in GC promotes p65-mediated aberrant NF-κB activation, facilitating GC metastasis and ultimately resulting in the worse clinical outcome. Thus, miR-7 may act as novel prognostic biomarker and potential therapeutic target for aberrant NF-κB-driven GC distant metastasis.

Highlights

  • Gastric cancer (GC) is the fourth leading cause of cancer-related death worldwide [1, 2]

  • Downregulated miR-7 is correlated with high RelA/p65 in gastric cancers (GC) To investigate the expression profile of miR-7 and RelA/ p65 in GC, we evaluate expression of miR-7, RelA/p65 and NF-kB downstream metastatic targets from TCGA stomach adenocarcinoma dataset (STAD) and NCBI GEO database

  • We found that HGC-27 and MKN-28 cells displayed decreased processing abilities to product 21-23 nt mature miR-7 from 110 nt pre-miR-7-1 RNA and reduced in vitro binding activities to pre-miR-7-1 RNA compared with other cells (Fig. 3f-g, upper panel)

Read more

Summary

Introduction

Gastric cancer (GC) is the fourth leading cause of cancer-related death worldwide [1, 2]. MicroRNAs (miRNAs, miRs) are small noncoding RNAs that act as post-transcriptional repressors of cancer-related genes through binding to the 3’-UTR of target mRNAs and thereby function as oncogenes or tumor suppressor genes [3]. MiRNA-7(miR-7), one of dysregulated miRNAs, has been characterized as a potential tumor suppressor in various cancers [7,8,9,10,11,12,13,14]. The expression profile, clinical relevance and dysregulated mechanism of miR-7 and NF-κB RelA/p65 in human gastric cancers (GC) metastasis remain largely unknown. This study is to investigate the expression profile, clinical relevance and dysregulated mechanism of miR-7 and NF-κB RelA/p65 in GC and to explore the potential therapeutic effect of miR-7 to GC distant metastasis

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.