Abstract

This study aimed to determine whether microRNA-322-5p regulates seizure and seizure damage by targeting the TLR4/TRAF6/NF-κB-associated inflammatory signaling pathway. In a pilocarpine-induced epileptic rat model, the expressions of miR-322-5p, TLR4, NF-κB, TRAF6, IRF5, IL-1β, and GABA were assessed by a quantitative polymerase chain reaction and western blotting. Tunel detects hippocampal neuron apoptosis. The results showed that the expression of miR-322-5p significantly decreased in status epilepticus (SE) rats. The reduction of miR-322-5p was accompanied by increased levels of pro-inflammatory cytokines, an increased NF-κB expression, and reduced γ-aminobutyric acid (GABA) levels. Exogenous miR-322-5p reduced the expression of inflammatory molecules and increased the GABA levels in SE rats, and also reduced hippocampal neuronal cell apoptosis caused by epilepsy. In conclusion, the miR-322-5p significantly inhibited the TLR4/TRAF6/NF-κB-associated inflammation and reduced neuronal apoptosis, suggesting that its induction may be of potential interest for novel antiseizure medications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.