Abstract

MicroRNA-223 (miR-223) is dysregulated in various cancer types, including acute myeloid leukemia (AML). Despite this, there has been a lack of studies exploring the role of miR-223 in leukemic stem cells, particularly those involved in drug resistance, a major cause of chemotherapy failure in AML. The present study aimed to elucidate the impact of miR-223 on drug resistance in the leukemic stem-cell line, KG-1a. Two AML cell lines, KG-1 and KG-1a, differing in the proportion of CD34+CD38- cells, were assessed for doxorubicin (DOX) sensitivity using the Cell Counting Kit-8 assay. The expression levels of miR-223 and protein kinase C ε (PKCε) were evaluated via reverse transcription-quantitative PCR and western blot analysis. The association between miR-223 and its target, PKCε, was confirmed by luciferase activity assay. The effects of miR-223 overexpression and PKCε inhibition were also evaluated in KG-1a cells using miR-223 mimic and small interfering (si)RNA transfection, respectively. Daunorubicin was then used to assess drug sensitivity in the siRNA-transfected KG-1a cells. Compared with KG-1 cells, KG-1a cells displayed greater resistance to DOX, and had increased PKCε levels and decreased miR-223 expression. Overexpression of miR-223 led to PKCε protein downregulation in KG-1a cells, which was further confirmed by a luciferase assay demonstrating miR-223 targeting of PKCε. However, despite these effects, miR-223 overexpression and PKCε inhibition did not change drug sensitivity in KG-1a cells compared with negative control cells. In summary, the present study demonstrated that miR-223 could target and silence PKCε expression in KG-1a cells; however, the chemoresistance of KG-1a cells to anthracycline drugs may not be directly associated with the low expression of miR-223.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.