Abstract

Background: Influenza A virus (IAV) has greatly affected public health in recent decades. Accumulating data indicated that host microRNAs (miRNAs) were related to IAV replication. The present study mainly focused on the effects of microRNA-21-3p (miR-21-3p) on H5N1 replication.Methods: The levels of miR-21-3p, virus structural factors (matrix 1 (M1), nucleoprotein (NP)), type I interferon (IFN) response markers (IFN-β, IFN-α), IFN-stimulated genes (protein kinase R (PKR), myxovirus resistance A (MxA), 2′-5′-oligoadenylate synthetase 2 (OAS)), and fibroblast growth factor 2 (FGF2) were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The protein levels of M1, NP, and FGF2 were tested by Western blot assay. The virus titer was assessed by tissue culture infective dose 50% (TCID50) assay. The dual-luciferase reporter assay and ribonucleic acid (RNA) immunoprecipitation (RIP) assay were used to verify the interaction between miR-21-3p and FGF2.Results: MiR-21-3p was reduced in H5N1-infected patients and A549 cells. MiR-21-3p overexpression facilitated the levels of M1, NP, TCID50 value, and reduced the levels of IFN-β, IFN-α, PKR, MxA, and OAS in H5N1-infected A549 cells. FGF2 was verified as a direct target of miR-21-3p. The introduction of FGF2 counteracted miR-21-3p-mediated decrease in the levels of M1, NP, and TCID50 value, as well as reduction in the levels of IFN-β, IFN-α, PKR, MxA, and OAS in H5N1-infected A549 cells.Conclusion: MiR-21-3p down-regulated FGF2 expression to accelerate H5N1 replication and confine IFN response.

Highlights

  • Influenza A virus (IAV) is a class of influenza virus, and the genome consists of eight negative-sense, single-stranded ribonucleic acid (RNA) [1]

  • In contrast with cells infected with negative control, the level of miR-21-3p in A549 cells infected with H5N1 was conspicuously down-regulated with prolonged infection (Figure 1B)

  • A549 cells are a kind of human lung cancer cells that have been used as models for IAV infection in vitro due to the sensitivity to IAV infection [16]

Read more

Summary

Introduction

Influenza A virus (IAV) is a class of influenza virus, and the genome consists of eight negative-sense, single-stranded ribonucleic acid (RNA) [1]. Another study demonstrated that the level of miR-485 was highly expressed in human airway epithelial cells infected with IAV, and its overexpression impeded. Influenza A virus (IAV) has greatly affected public health in recent decades. Accumulating data indicated that host microRNAs (miRNAs) were related to IAV replication. The dual-luciferase reporter assay and ribonucleic acid (RNA) immunoprecipitation (RIP) assay were used to verify the interaction between miR-21-3p and FGF2. MiR-21-3p overexpression facilitated the levels of M1, NP, TCID50 value, and reduced the levels of IFN-β, IFN-α, PKR, MxA, and OAS in H5N1-infected A549 cells. The introduction of FGF2 counteracted miR-21-3p-mediated decrease in the levels of M1, NP, and TCID50 value, as well as reduction in the levels of IFN-β, IFN-α, PKR, MxA, and OAS in H5N1-infected A549 cells. Conclusion: MiR-21-3p down-regulated FGF2 expression to accelerate H5N1 replication and confine IFN response

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.