Abstract

ABSTRACT miR-17-5p has been proved that play important roles in many kinds of tumors progression. This study aimed at explore the function and mechanism of miR-17-5p in thyroid cancer (TC). RT-qPCR was used to detect miR-17-5p and Early growth response 2 (EGR2) expression in TC tissues and cells. CCK8 and colony formation assay were used to analyze cell proliferation. Cell migration and cell invasion was detected by Wound-healing assay and Transwell assay. Detection of protein expression using Western blot analysis. Dual-Luciferase assay was used to analyze the relationship between miR-17-5p and EGR2. In vivo experiment was performed by establishing Xenograft animal model to observe the function of miR-17-5p. We found that miR-17-5p is significantly increased in thyroid cancer tissues and cells. miR-17-5p inhibition repressed cell proliferation, clonal formation, cell migration, and cell invasion in thyroid carcinoma. Moreover, miR-17-5p inhibition suppressed tumorigenesis in vivo. Dual-Luciferase assay and Western blotting assay further proved that miR-17-5p has a negative regulation to EGR2. EGR2 was decreased in TC tissues and cells. Overexpressed EGR2 inhibited the development of thyroid carcinoma both vivo and in vivo. EGR2 knockdown remarkably decreased the anti-cancer effect of miR-17-5p inhibition. miR-17-5p is a thyroid cancer oncomir by modulation of the EGR2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.