Abstract

MicroRNAs (miRNAs) have been discovered to have pivotal roles in regulating the drug resistance of various types of human cancer, including cisplatin (DDP) resistance in non-small cell lung cancer (NSCLC). Fewer studies have explored the roles of miR-106a in NSCLC-cell resistance to DDP and its precise molecular mechanism has remained elusive. In the present study, whether miR-106a was able to mediate resistance of the lung cancer cell line A549 to DDP was investigated. Reverse transcription quantitative polymerase chain reaction was used to analyze miR-106a mRNA expression levels. miR-106a expression levels were upregulated in the DDP-resistant cell line A549/DDP compared with its parental cell line, A549. miR-106a-transfection induced DDP-resistance in A549 cells, while repression of miR-106a by anti-miR-106a in A549/DDP resulted in enhanced DDP cytotoxicity. Furthermore, it was discovered that the mechanism of miR-106a-induced DDP resistance involved the expression of adenosine triphosphatase-binding cassette, sub-family A, member 1 (ABCA1), as indicated by transfection of cells with short interfering RNA-ABCA1. The results of the present study suggested a novel mechanism underlying DDP-resistance in NSCLC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.