Abstract

Microstructure reactors (microreactors) in recent decades became one of the most actively studied subjects of the reaction equipment aimed at intensification of chemical processes and increase in their safety. It is not surprising because due to miniature dimensions of microstructures which do not exceed 2 mm microreactors contribute to minimization of the material at their production as well as raw material and energy in the process of exploitation. Moreover, due to acceleration of heat and mass transfer the productivity of equipment with microreactors in a range of cases is significantly higher than classical batch reactors applied in industry. The brief overview of the modern development and achievements of microreactor technology is given in this article by an example of heterogeneous reaction systems which are different by their nature and occur in different types of microreactors: phase-transfer catalysis, biocatalysis, and synthesis of nanoparticles. A special attention in the article is paid to the aspects of intensification of the considered processes because exactly the possibility of intensification makes microreactor technology attractive for the industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.