Abstract

Microreactor Technology (MRT) represents a significant leap forward in chemical process intensification (PI), offering distinct advantages over conventional macroscale methods. The utilization of microfluidic reactors for PI has transformed various industries by enabling efficient handling of reactions and precise control of operating conditions, by advantages encompassing the reduced consumption of samples, reactants and catalysts, enhancement of heat and mass transfer rates, inherent from the high surface area to volume ratio. Despite the advances in the field, challenges remain, particularly concerning the manufacturing costs associated with scale-up and numbering-up, especially in catalytic processes. Effectively transitioning from microscale to industrial-scale production demands careful Research and Development (R&D) and innovative strategies to preserve the enhanced mixing and reaction capabilities inherent to microscale technologies. The scale-up of catalytic processes using microfluidic-based devices introduces distinct challenges, including managing heat transfer and ensuring optimal flow distribution. This review addressed promising developments in critical strategies to overcoming these challenges, such as the optimization of reactor block and flow distributors that can be initially performed by Computational Fluid Dynamics (CFD). Moreover, achieving effective thermal management in microreactor systems necessitates a balance between heat removal from reactors and minimizing heat dissipation into the surroundings. Innovative techniques such as 3D printing for customizable designs, coupled with numerical simulations to refine geometries, play fundamental roles in overcoming these challenges. MRT alongside innovation in the catalyst field holds great potential in the application of microfluidic-based devices in PI of catalytic processes and can contribute significantly for more sustainable processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.