Abstract

In order to discover the causes of the abnormal noise of shock absorbers, it is necessary to identify the operating characteristics of the shock absorbers. A micro-process model for operation of the hydraulic shock absorber was presented. A novel concept, which describes the process of hydraulic shock absorber by dividing it into smaller steps, was proposed. The dynamic model and the differential equations were established. The results of numerical simulation agree well with data obtained from the vibrostand test, indicating that the collision between the piston and the oil, the alternation of static friction and sliding friction acted between the piston and the cylinder, and the adherence between valve plate and piston result in impact on the piston head near the top dead center and the bottom dead center. Ultimately, the impact excites the high-frequency vibration of the piston structure, which can generate the abnormal noise in the hydraulic shock absorber after its transfer. And the maximum vibration acceleration on the piston head and the abnormal noise increase with the increase of the gap between the oil and piston rod head, the maximum static friction force and the adhering function, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.