Abstract

Microporous activated carbon pellets have been prepared from date stone without the use of a binder. These pellets were tested as electrodes for capacitive deionization. The activation process involved two steps. First, a pyrolysis of the date stone was conducted to a temperature of 1000 °C under nitrogen flow. Then, the obtained carbon monoliths were physically activated at 900 °C under CO2 flow. Elemental analysis, BET, SEM, mercury porosimetry, conductivity measurement and electrochemical performance testing carried out to characterize the structure and the properties of activated carbon pellets. The activated carbon exhibited predominant microporosity with a specific surface area of 896 m2 g−1 which leads to the highest specific capacitance 270.90 F/g. The performance of activated carbon electrode at 900 °C in capacitive deionization (CDI) test was also examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.