Abstract

Microplastic accumulation in soil ecosystems poses significant environmental concerns, potentially impacting nitrogen cycling processes and ecosystem health. This meta-analysis of 147 studies (1138 data points) assessed the impact of microplastics (MPs) on soil nitrogen-acquisition enzymes. We found that MPs exposure significantly increased soil urease (UE) and leucine aminopeptidase activities by 7.6 % and 8.0 %, respectively, while N-acetyl-β-D-glucosaminidase activity was not significantly affected. Biodegradable MPs showed more pronounced effects compared to conventional MPs. Enzyme activities were influenced by MPs properties (e.g., polymer type, size, concentration), experimental conditions (e.g., field or laboratory setting, temperature, nitrogen fertilization), and soil properties (e.g., clay content, pH, organic carbon, total nitrogen). For instance, acidic soils enhanced UE activity, while neutral soils reduced it. These findings emphasize the complex interactions between MPs and soil ecosystems, highlighting the need for context-specific environmental management strategies and policy-making approaches to mitigate the impacts of MPs pollution on soil health.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.