Abstract

In this paper, we demonstrate the first use of a microplasma ionization source for ambient mass spectrometry. This device is a robust, easy-to-operate microhollow discharge that enables ambient direct analysis of gaseous, liquid, and solid-phase samples with minimum requirements in terms of operating power and high purity gas consumption. The initial performance of the microplasma device has been evaluated by ionizing samples containing dimethyl sulfoxide (DMSO), dimethylformamide (DMF), methyl salicylate, caffeine, l-leucine, l-histidine, loratadine, ibuprofen, acetaminophen, acetylsalicylic acid, and cocaine in various forms. These molecules are diverse in nature, but almost all have relatively high proton affinities. Thus, the major species observed in all obtained mass spectra corresponded to protonated molecules. Though these microplasmas are known to produce significant densities of metastable species and electrons with mean energies greater than several electronvolt, minimal fragmentation was observed. Background spectra showed prominent signals corresponding to H(+)(H(2)O)(2) ions and a distinct lack of H(3)O(+). Small water cluster ions are likely the dominant proton transfer agents, giving rise to mass spectral data very similar to that obtained using other plasma-based ambient ionization techniques. The simplicity, low cost, low power, low rate of gas consumption, and possibility of being batch-fabricated, makes these microplasma devices attractive candidates as ion sources for miniaturized mass spectrometry and other field detection applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.