Abstract

The objective of our study was to develop a micronucleus (MN) assay for detecting genotoxic damage after inhalation exposure in mouse alveolar Type II and Clara cells, potential target cells for lung carcinogens. Ten male C57BL/6J mice were exposed to ethylene oxide (630 mg/m(3)) for 4 hr via inhalation; 10 unexposed mice serving as controls. 72 hr after the exposure, Clara cells and alveolar Type II cells were isolated using two different methods. Method 1 included a 15-min trypsin lavage and a 2-hr incubation of cell suspension. Method 2 involved a 30-min trypsin lavage, Percoll gradient centrifugation, and a 48-hr incubation for cell attachment. Nitro blue tetrazolium (NBT) -staining was applied to distinguish Clara cells. The frequency of micronuclei (MNi) was scored in NBT-negative cells (defined as Type II cells in Method 2) and NBT-positive cells (Clara cells). To detect possible differences between the techniques, MNi in Clara cells were analyzed from samples prepared by both methods. With Method 2, a clear increase in the mean frequency of micronucleated cells was seen in the exposed mice as compared with the controls, for both alveolar Type II and Clara cells. However, no significant increase in MN frequency was seen in Clara cells analyzed from samples prepared by Method 1. Based on our findings, mouse alveolar Type II and Clara cells seem to be suitable for MN analysis in studies aimed at identifying genotoxic lung carcinogens. Both alveolar Type II and Clara cells can be isolated using Method 2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.