Abstract

Large volume change and associated stress generation is known to cause failure of the silicon thin film anode used for Lithium-ion batteries after a few cycles. Experimental observations suggest that plastic deformation of the underlying Cu substrate and degradation of the active/inactive interface are the primary reasons responsible for the capacity fade. The goal of the present study is to examine the interplay between these mechanisms using a computational mechanics approach. In the present study, a novel multi-physics finite element framework has been developed to simulate the lithiation and de-lithiation induced failure of amorphous Si (a-Si) thin film on Cu foil. The numerical framework is based on the finite deformation of the active silicon wherein diffusion of lithium occurs, plastic deformation of the Cu foil, and debonding of the active/inactive interface. The effect of substrate property, interfacial energy and kinetics of interface degradation has been examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.