Abstract

The paper addresses the underlying source of two forms of induced anisotropy in granular materials: contact orientation anisotropy and contact force anisotropy. A rational, mathematical structure is reviewed for the manner in which fabric anisotropy emerges and evolves during loading. Fabric is expressed as an orientation density, and transport phenomena such as convection, contact generation, and diffusion control the rate of fabric evolution during loading. The paper proposes specific measurable forms for all terms, based upon the micro-mechanics of particle interactions. Discrete element (DEM) simulations are used to verify and quantify these terms, so that the theory can be applied to general loading conditions. The DEM simulations are of densely packed durable spheres, and the emphasis is on soil behavior at large strains, specifically on fabric and strength at the critical state. Once the theory has been developed and quantified, it is applied to predict the effect of the intermediate principal stress on strength.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.