Abstract
Fibre-reinforced polymer (FRP) composites have been widely used in industry. However, the machining of FRP products is difficult, because of very different properties of the fibres and matrix. This paper discusses the development and implementation of a microstructure-based three-dimensional finite element model for the elliptic vibration-assisted (EVA) cutting of unidirectional FRP composites. The results showed that the EVA cutting has a good potential to the machining of FRP composites, featured a much reduced cutting force, better surface integrity and controllable chip size.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.