Abstract

A self-consistent model developed to describe the elastic–viscoplastic behavior of heterogeneous materials is applied to low carbon steels to simulate tensile tests at various strain rates in the low temperature range. The choice of crystalline laws implemented in the model is discussed through the viscoplastic flow rule and several strain-hardening laws. Comparisons between three work-hardening models show that the account of dislocation annihilation improves the results on simulations at large strains. The evolution of the Lankford coefficients and texture development are also successfully simulated. Some microstructural aspects of deformation such as the stored energy and the evolution of the flow rates are discussed. By including the dislocation density on each slip system as internal variable, intragranular heterogeneities are underscored.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.