Abstract

Fe nanowire array with strong shape anisotropy was employed as the soft phase in Nd-Fe-B based nanocomposites. The effects of the Fe nanowire distribution on magnetic properties of the nanocomposites were investigated by micromagnetic simulation. The results indicate that the shape anisotropy of Fe wires added in the same direction as the uniaxial magnetocrystalline anisotropy of the hard phase cannot increase the coercivity of the nanocomposite. When the nanowires are distributed perpendicular to the easy axis of the hard phase, the shape anisotropy of soft phase can retard the moments from rotating to the full reversed direction, leading to enhanced coercivity. In addition, with increasing the nanowire diameter, the coercivity of the nanocomposite decreases, but the dipolar interaction shows different roles in magnetic reversal of nanocomposite for different distributions of nanowires. The current results suggest that the coercivity of the Nd2Fe14B/α-Fe nanocomposite can be enhanced by introducing the soft magnetic nanowire array with the diameter less than the exchange length and with the long axis along the direction other than the easy axis of hard phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.