Abstract

Primordial black holes (PBHs) with a mass from $10^{-16}$ to $10^{-11}\,M_\odot$ may comprise 100% of dark matter. Due to a combination of wave and finite source size effects, the traditional microlensing of stars does not probe this mass range. In this paper, we point out that X-ray pulsars with higher photon energies and smaller source sizes are good candidate sources for microlensing for this mass window. Among the existing X-ray pulsars, the Small Magellanic Cloud (SMC) X-1 source is found to be the best candidate because of its apparent brightness and long distance from Earth. We have analyzed the existing observation data of SMC X-1 by the RXTE telescope (around 10 days) and found that PBH as 100% of dark matter is close to but not yet excluded. Future longer observation of this source by X-ray telescopes with larger effective areas such as AstroSat, Athena, Lynx, and eXTP can potentially close the last mass window where PBHs can make up all of dark matter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.